An overview of the applications of certain minimax theorems

Biagio Ricceri

Department of Mathematics and Computer Sciences, University of Catania, Catania, Italy ricceri@dmi.unict.it

In this lecture, I will highlight the great flexibility of certain minimax theorems which allows one to get a series of consequences in different fields. Here are two samples:

Theorem 1 Every non-empty uniquely remotal compact subset of any normed space is a singleton.

Theorem 2 Let $a \ge 0$, b > 0, let $\Omega \subset \mathbf{R}^n$ be a smooth bounded domain, with $n \ge 4$, and let $p \in \left[0, \frac{n+2}{n-2}\right]$.

Then, for each $\lambda > 0$ large enough and for each convex set $C \subseteq L^2(\Omega)$ whose closure in $L^2(\Omega)$ contains $H^1_0(\Omega)$, there exists $v^* \in C$ such that the problem

$$\begin{cases} -\left(a+b\int_{\Omega}|\nabla u(x)|^{2}dx\right)\Delta u=|u|^{p-1}u+\lambda(u-v^{*}(x)), & \text{in }\Omega\\ u=0, & \text{on }\partial\Omega \end{cases}$$

has at least three solutions, two of which are global minima in $H_0^1(\Omega)$ of the functional

$$u \to \frac{a}{2} \int_{\Omega} |\nabla u(x)|^2 dx + \frac{b}{4} \left(\int_{\Omega} |\nabla u(x)|^2 dx \right)^2 - \frac{1}{p+1} \int_{\Omega} |u(x)|^{p+1} dx - \frac{\lambda}{2} \int_{\Omega} |u(x) - v^*(x)|^2 dx.$$

A very challenging problem is as follows: does Theorem 2 hold for n > 4 and $p = \frac{n+2}{n-2}$?